

RRAM based analog synapse device for neuromorphic system

Kibong Moon, Euijun Cha, and Hyunsang Hwang

Pohang University of Science and Technology (POSTECH), Korea

The 13th Korea-U.S. Forum on Nanotechnology, Sep. 26-27, Seoul, Korea

Device & Process laboratory

- Introduction and Motivation
- Mo/PCMO synapse device
- Pattern recalling system
- Summary

Semiconductor Integrated Device & Process laboratory

<u>Neuron</u> (~10¹¹) + <u>Synapse</u> (~10¹⁵) + Learning Rule
Low energy (~10fJ) synapse and neuron devices

 ✓ Various new synapse devices were proposed (CBRAM, PCM, 3T-FeMEM, and RRAM)

Problems : Large device area, power consumption, circuit complexity etc..

- ✓ VO_2 Insulator-Metal-Transition temperature ~ 67°C
- : Not practical for device application

Mo/PCMO synapse device

✓ Current level ∝ Active area

✓ Field-induce oxygen migration & redox reaction at the interface

: Control thickness of interface oxide and device resistivity

Mo/PCMO synapse device

- Well fabricated without mixing (Mo/PCMO)
- ✓ Direct evidence of redox reaction at the interface

S D P Sem Devi

Mo/PCMO synapse device

✓ DC property

✓ AC property

- ✓ Potentiation (-V)
- : Increase conductance
- : Strengthen synaptic weight

- ✓ Depression (+V)
- : Decrease conductance
- : Weaken synaptic weight

NbO₂ neuron device

 \checkmark NbO₂ based oscillation characteristics with synapse device

 \checkmark Above critical threshold voltage \rightarrow Oscillation behavior

Pattern recalling system

✓ Neuromorphic application using 11k-bit array Mo/PCMO synapse device and NbO₂ IMT oscillator neuron devices

Semiconductor Integrated Device & Process laboratory

Pattern recalling system

✓ Synapse weight mapping : Binary and Analog synapse based Hopfield neural network

✓ Analog synapse shows much better pattern recognition accuracy

Summary

Mo/PCMO analog synapse device

- Field-induced oxygen migration for switching of Mo/PCMO device
- Fabrication of large scale synapse array device on 8-inch wafer
- Evaluating synapse characteristics for an artificial synapse

Hardware implmenetation of neuromorphic application

- NbO₂ oscillator as an artificial neuron
- Integrating Mo/PCMO synapse array and NbO₂ neuron
- Improved pattern recalling accuracy using analog synapse

Thank you for your attention...!

This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (2012-0009460)

